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Phase diagram of the Z(4) model? 
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B r a d  
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Abstract. Systems with Z(4) global symmetry defined on a square lattice are studied, in 
the whole parameter space, both by Monte Carlo simulations and by the Migdal-Kadanoff 
renormalisation group scheme. A phase diagram is obtained with quantitative predictions 
as to the location of the boundaries between the different phases. Four distinct phases are 
observed. 

1. Introduction 

Theories with Z ( N )  symmetry have been intensively studied in recent years. The 
reason for such an interest in this subject is the fact that they are relevant to a wide 
class of physical problems. As we know, spin systems have long been used as models 
of magnetism and phase transitions. Elementary particle physicists also became 
interested in Z( N )  models, since space-time lattices turned into a popular technical 
device to regularise field theories. The study of Z ( N )  gauge theories on a four- 
dimensional lattice is particularly relevant to elementary particle physics, as they seem 
to be related to confinement in SU(N) ('t Hooft 1978). 

In this paper we study the phase diagram of the two-dimensional Z(4) model (the 
symmetric Ashkin-Teller model) on a square lattice in the whole parameter space. We 
use Monte Carlo (MC) simulations (Binder 1979) and the Migdal-Kadanoff renormalisa- 
tion group (MKRG) scheme (Migdal 1975a, b, Kadanoff 1976). 

It is possible to define a generalised duality transformation, under which Z( N )  
models are self-dual in a certain region of parameter space (Alcaraz and Koberle 1980). 

In the region where generalised self-duality holds, the Z(4) model has been studied 
by several different formalisms (Alcaraz and Koberle 1980, Carneiro er a1 1982, 
Kohmoto et a1 1981, Rujan et a1 1981, Stavans and Domany 1983, Wu and Lin 1974). 
It is found that the Z(4) model has at least three distinct phases in this region: 

(a) a ferromagnetic phase (I) 
(b) an intermediate partially ordered phase (11) 
(c) a disordered phase (111). 
The region where generalised self-duality holds is studied in this paper, first, by 

means of Monte Carlo simulations. We obtain the Z(4) phase diagram with quantitative 
predictions as to the location of the boundaries between these three phases. No 
evidence for a massless phase is found. 

t Work partially supported by FINEP, CNPq and CAPES. 
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Next, we use Monte Carlo simulations to study the region where generalised 
self-duality does not hold. In this region, which is much less known than the previous 
one, we obtain another Z(4)  phase, with perpendicular order, and  the boundary between 
it and the disordered phase is determined. A short account of these results has already 
been given (Carneiro et a1 1982). 

Finally, the Z ( 4 )  model is analysed using the Migdal-Kadanoff renormalisation 
group scheme. The results previously obtained with this method in the region where 
generalised self-duality holds are reproduced (Rujan et a1 198 1, Creutz and Roberts 
1983). Within the context of the MKRG scheme, we are able to define a transformation 
out of this region. Using this transformation, the existence of the Z(4) phase with 
perpendicular order predicted by our  MC simulations and  by Kohmoto et a1 is con- 
firmed. The phase boundaries obtained by the M K R G  method and by MC simulations 
in the whole parameter space are found to be in excellent agreement. 

The plan of this paper is as follows: in 0 2 we define Z ( N )  models and describe 
the Monte Carlo simulations used to obtain the Z(4) phase diagram. In § 3 we use 
the Migdal-Kadanoff renormalisation group scheme to study this model. 

2. Monte Carlo simulations results 

Let us define a Z (  N )  model on a square lattice. At each site, j ,  we consider a variable 
S( j ) ,  that can take N different values: 

S ( j )  = exp{iB(j)} = e x p { i ( 2 ~ /  N ) n ( j ) }  t~ ( j )  = 0, 1 ,2  . . . N - 1. (2.1 

Taking into account nearest-neighbour interactions only, the most general form of the 
energy with Z (  N )  global symmetry (invariance under global ( 2 ~ /  N ) n  rotations) is 

[NI 

j , @  (I = I  
E = - 2  J , [cos (~ (e ( j ) -B( j+ /1 . ) ) -1]  

where p represents the conventional primitive vectors of the square lattice, [NI  is the 
greatest integer less than or equal to 4N and JI, J2. .  . JrNl are coupling constants. It 
is also convenient to introduce variables x, = exp( - Ea/ kT) where E, is the energy 
required to rotate a spin by a n  angle 2 ~ a /  N, k is the Boltzmann constant and  T is the 
temperature. 

The Monte Carlo simulation of the thermodynamical behaviour of these systems 
is done as usual (Binder 1979, Carneiro er al 1982). Our calculations for the Z ( 4 )  
model are performed on  square lattices of different sizes (mainly 20 ~ 2 0 )  subject to 
periodic boundary conditions. We take data after each run over the entire lattice (one 
MC step) and the number of Monte Carlo steps used to determine each point of the 
phase diagram varies from 1000, very far from the phase transition, up  to 15000 near 
the transition, discarding from 30% to 50% of the initial steps, enough to ‘thermalise’. 

For N = 4, we have two coupling constants Jl and J2 and 

x I  = exp{ -,(JI +2J2)/ kT] 

x,=exp{ -2J1/kT}. 

A study of the partition function 3 reveals that it is invariant under a change of 
Jl into - J l ,  and that it obeys generalised self-duality relations in the region 

o < x ,  < + ( I  +x*) o < x , <  1 (2.4) 



Phase diagram of the Z(4) model 2121 

that is, %(x,, x2) = A%(xT, xT), where A is a constant and 

xT=(1 -x*)/(1+2x, +x,) x,*=(l  - 2 ~ 1  + ~ 2 ) / ( 1  + 2 ~ 1 + ~ 2 ) .  (2.5) 

In  the region where generalised self-duality holds, previous theoretical results 
predicted the existence of at least three phases (Alcaraz and Koberle 1980, Kohmoto 
et a1 1981, Rujan et a1 1981): 

(a) Phase I ,  the usual ferromagnetic phase with ( S )  # 0 (and, of course, ( S * )  # 0 
also), occurring at low temperatures, 

(b) Phase 11, an intermediate temperature phase with ( S )  = 0 and ( S 2 )  # 0, 
(c) Phase 111, the disordered phase with ( S )  = ( S 2 )  = 0. 
The region where generalised self-duality does not hold has been studied much 

less frequently (Kohmoto et a1 1981). By simple energy considerations we can easily 
verify that at zero temperature and for J,>O the ground state is ferromagnetic if 
J2/ J, > -0.5. If J2/ J, < -0.5 the ground state is such that the spins on nearest-neighbour 
sites are perpendicular. The order in this state may be characterised as follows: first, 
divide the two-dimensional square lattice into two sub-lattices, A and B, defined in 
such a way that the nearest-neighbour sites to sub-lattice A lie on sub-lattice B, and 
vice versa. Second, define the sub-lattice order parameters (SA) ,  (SB) ,  (Sa) and (Si) .  
Then the ground state for JJJI < -0.5 is such that (SA) = ( S , )  = 0 and ( S i )  = -(Si) # 0. 

The points on the boundaries of our phase diagram are obtained by measuring the 
order parameters and locating the point where they equal one half of their value in 
the ordered phase. These points correspond approximately to a maximum of the 
specific heat, as happens in the Z(2) case (Landau 1976). Figures 1 ,2  and 4 are typical 
examples of the variation of order parameters and specific heat as kT/JI  changes, 
while the ratio of the coupling constants J2 and J, is kept fixed. 

1.3 1.5 1.7 
k T /  J, 

Figure 2. Specific heat per spin and order parameters 
variation for the thermodynamical path J 2 / J ,  = 0.27. 
15000 MC steps were used on a square 20 x 20 lattice. 
The full curves are guides to the eye. + denotes (S), 
0 denotes (S’ )  and 0 denotes Ce. 

8) 
S? 

Figure 1. Specific heat per spin and order parameters 
variation for the thermodynamical path J 2 /  J ,  = I .50. 
15000 MC steps were used on a square 20 x 20 lattice. 
The full curves are guides to the eye. + denotes ( S ) ,  
0 denotes ( S 2 )  and 0 denotes Ce. 
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1.0- 

0.5- 

Elitzur et a1 (1979) argued that a massless intermediate phase between the ferromag- 
netic and disordered phases should appear in Z( N )  self-dual models for N > N,. They 
estimate the value of N ,  > 4. Recently Stavans and Domany (1983), using MC simula- 
tions, looked for indications of this phase in Z(4) models in the neighbourhood of the 
point (x, = 0.5, x2 = 0.0). Although they found two peaks in the specific heat, one very 
steep and narrow and another one much smaller and broader, they conclude that no 
strong evidence exists for a massless phase. 

We also investigate the region where this phase could appear ( - 0.5 < J 2 /  J ,  < 0), 
and the results we obtain are similar to those of Stavans and Domany. Only very close 
to J J J ,  = -0.5 do we find two peaks. Figure 3 shows a plot of the specific heat and 
the magnetisation for J 2 / J ,  = -0.45. We find a steep and narrow peak, at the tem- 
perature where the magnetisation changes rapidly, while the second peak, located at 
a higher temperature, is very wide and much shorter than the first one. The first peak 
is close to the self dual line, where the transition should be, in case we had only the 
usual ordered and disordered phases in this region. We also observe that the second 
peak is outside the region where generalised self duality holds. If an intermediate 
massless phase did exist, its boundaries should be related by the duality transformation, 
which means that, if the observed peaks correspond to the boundaries of such an 
intermediate phase, both should be located inside this region. 

Figure 3. Specific heat per spin and order parameters variation for the thermodynamical 
path J J J ,  = -0.45. 15000 MC steps were used on a square lattice; the full curves are guides 
to the eye. + denotes ( S ) ,  0 denotes (S’) and 0 denotes Ce. 

Furthermore, as we change the lattice size from 10 x 10 to 20 x20, these peaks do 
not scale, as they should, in a transition to a critical phase. 

We therefore conclude that, up to this point, the MC analysis does not favour the 
existence of a massless phase in the Z(4)  model. We don’t believe, however, that the 
subject is conclusively settled, and we plan to study it further. 

It is interesting to note that for the Z(4) gauge 4~ model some authors (Alcaraz 
and Jacobs 1983, Creutz and Okawa 1982) claim to have found this intermediate 
massless phase. 
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In spite of the many similarities between Z ( N )  4~ gauge systems and ZD spin 
systems, there is no guarantee that their phase diagrams must be the same. It is true 
that the MKRG transformation does predict identical phase diagrams for both systems 
(Kadanoff 1977), but this scheme is an approximation. Therefore, we do not believe 
that the results on the existence of a massless phase on 4~ gauge systems, obtained 
by Alcaraz and Jacobs (1983) and by Creutz and Okawa (1982), furnish conclusive 
evidence for the 2~ spin problem. 

In figure 5 we show the phase diagram obtained through our Monte Carlo simula- 
tion. In the ferromagnetic region each point is determined starting both from an 
ordered and a disordered state. Some of our results on the 20 x 20 lattice were checked 

Figure 4. Specific heat per spin and ortler parameters variation for the thermodynamical 
path J J J ,  = -0.60. IS000 MC steps were used on a square lattice. The full curves are 
guides to the eye. + denotes i(Sa)l, 0 denotes /(Si)I and 0 denotes Ce. 

Figure 5. Phase diagram for the Z(4) model. Dots correspond to Monte Carlo simulations 
and full curves were obtained by the M K R C  scheme. 
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on 10 x 10 and 50 x 50 lattices, and no significant difference was found. Continuum 
lines a, b, c and d are the results of our M K R G  calculations which are described in § 3. 
Line a is the self-dual line. Lines b and c are dual to each other. Boundaries for the 
J ,  < 0 portion of the diagram are obtained from the J ,  > 0 portion, using the fact that 
the partition function is invariant under the change of J ,  into -JI. Phase I is ferromag- 
netic, phase 111 is disordered and I1 is the intermediate temperature phase. MC results 
are very close to boundaries a, b and c, and therefore are compatible with duality. 
Phase I ’  is an antiferromagnetic phase with order parameters defined in the sublattices 
(SA) = - ( S E )  # 0 and (Sa) = (Si) # 0. Phase 11’ has (SA)  = ( S E )  = 0 and ( S i )  = (Si) # 0. 
Phase 111’ is disordered. Phases IV and I V  are phases with perpendicular order and 
parameters (SA)  = ( S E )  = 0 and (Sa) = -(Si) # 0. 

Near the point J 2 /  J ,  = -0.5 and kT/ J ,  = 0, the MC results for the transition points 
seem to converge at T = 0, indicating that the model with J J  J ,  = -0.5 and J ,  > 0 has 
no transition at T # 0. Therefore, the four-state antiferromagnetic Potts model (Wu 
1982) which corresponds to J J  J ,  = 0.5 and J ,  < 0 should have a similar phase structure, 
due to the symmetry of the diagram. This result is in agreement with previous theoretical 
prediction (Baxter 1982). 

3. Migdal-Kadanoff renormalisation group results 

The diagram of the Z(4) model is also investigated by using an infinitesimal M K R G  

scheme. These transformations have been used before in the ferromagnetic region 
(Rujan et a1 1981, Creutz and Roberts 1983). In order to preserve the symmetry of 
the ground state for both the ferromagnetic and antiferromagnetic regions we define 
a MKRG finite transformation with decimation of an even number of spins only. Starting 
from those transformations we are able to define an infinitesimal transformation which 
is valid for both the ferromagnetic and antiferromagnetic region. 

The details of the M K R G  transformation are left to the appendix. Here we limit 
ourselves to describe the results and compare them with the phase diagram obtained 
in the previous section. 

The MKRG flow is shown in figure 6 in terms of the variables x, and x2 defined in 
equation (2.3). We consider only the region O s  x 2 s  1, x i  3 0. The portion of the 
diagram for x 2 3  1 can be obtained by the symmetry relation x 2 +  l /x2,  xi  + x I / x 2  (or, 
equivalently, J ,  + - J , ) .  

We obtain four phases: 
(a) the usual ferromagnetic phase ( I )  which is the region of attraction of the strong 

coupling fixed point L (x,  = x2 = 0); 

L I1 H 

L 0 2  0.6 1.0 1.4 1.8 2 . 2  2 . 6 x ,  

Figure 6.  M K R G  Row trajectories. 
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(b) phase 11, the partially broken Z(4) symmetry phase, which is the region of 
attraction of the fixed point L’(xl = 0, x2 = 1); 

(c) the disordered phase (III) ,  which is the region of attraction of the fixed point 
H (xl = x2 = 1), and 

(d) phase IV, with perpendicular order, which is the region of attraction of the 
fixed point L (xl = m, x2 = 1). 

The boundaries between phases I and 11, and between phases I1 and 111 are, 
re_spectively, the critic.1 surfaces which contain the Ising fixed points I? (xI = 0, x2 = 
J 2  - 1) and I ,  (xI = J 2  - 1, x2 = 1). These surfaces are related to one another by the 
duality transformation. In the MKRG approximation, the boundag between phases I 
and 111 is the critical surface of the Ising fixed point I2 (xl = J 2  - 1, x2 = ( J2  - 
whereas it is known exactly that it should be a line of critical points (Rujan et a1 1981). 
P is the four-state Potts model fixed point (xl = x2 = f). The boundary between phases 
111 and IV isthe critical surface which contains the antiferromagnetic Ising fixed point 
I3 (x, = 1 +J2 ,  x2 = 1); therefore we expect that the transition 111-IV is in the Ising 
universality class (Drugovich et a1 1982). 

In the region where generalised self-duality holds (equation (2.4)), our results are 
similar to those obtained by Rujan et a1 (1981) and Creutz and Roberts (1983). We 
also do not find a massless phase in this region. This, however, should not be taken 
as conclusive evidence against the existence of this phase, since the Migdal-Kadanoff 
method is not exact (Kadanoff 1976). 

The phase diagram obtained by our MKRG calculation is compared with our MC 

simulation results in figure 5 .  The agreement between both of them is excellent, within 
the error of the simulation. The phase with perpendicular order detected by our MC 

simulation is therefore confirmed by our MKRG calculations. This phase structure in 
the antiferromagnetic region is not surprising since as J J J ,  + -CO, the Z(4) model 
becomes an Ising antiferromagnet, which undergoes a phase transition when defined 
on a square lattice?. It should be noted that our MKRG results predict that the 
antiferromagnetic four-state Potts model (equivalent by symmetry to line xI = 1) has 
no transition. 

Appendix 

Here we describe in detail the MKRG method applied to the Z(N)  model on a square 
lattice. 

It is convenient to rewrite the Hamiltonian equation (2.2), as 

where ( -  V) is the nearest-neighbour interaction energy (in units of k T )  

K, = J , / k T  and [ A 6  = (2771 N)r ( r = O ,  1 , . . . ,  N-1). 

t The absence of a phase transition in the antiferromagnetic Ising model on a triangular lattice suggests 
that the Z(4) model on such a lattice does not have a phase with spin order similar to phase IV. 
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The variables x, can be written as 

x, = exp{V({&l, (2n lN)r I  
[NI 

= exp i c &(cos (2m/  N ) a  - 1) (r=O, 1,2 , . . . ,  N-1). (A3) 

Note that xo = 1 and x ~ - ~  = x, so that there are only [NI independent x-variables. 
The MKRG used here is, as usual, a combination of a bond-shifting operation 

followed by decimation, as shown in figure 7. After shifting n bonds, the coupling 
constants become (see figure 7 ( b ) )  

u = l  

K h  = ( 1  +n)Ku (a = 1,2, .  . . , [NI).  644) 

( U )  (bl ( C )  

Figure 7. Schematic representation of the Migdal-Kadanoff renormalisation scheme: (a) 
original interaction, ( b )  interaction after bond shifting, (c) new interaction. 

The corresponding transformation for the x variables is 

x '=exp { W K h I ,  (2 .~ /N) r )}  

r (r=O, 1 ,..., N-1). - - x ( I  +n) 

After decimation of n spins, the renormalised couplings (figure 7(c) )  can be expressed in 
terms of the original ones: 

('46) Kg = RZ'({Kb})  = RV)({AK@}) 
where A = 1 + n  is the scale factor of the M K R G  transformation. The corresponding 
expression for the x-variables is 

x: = exp{ V ( { K : } ,  (2n/ N)r)} 

= Fy'({x:}) = Fy({Xt}). 

In order to obtain the MKRG transformation equations we need to decimate n 
Z(N)-spins on a line, that is, we have to calculate (see figure 7(b))  

c 
where Kg is chosen such that V ( { K h } ,  0) = 0 (or x;l = 1). Using the identity 

1 N-I 

- exp[ im( $ .)1= ( m = O , l ,  ..., N-1)  
N R=O 

we can write xr as 
1 N-l 

x i=-  N m=O a,,, exp( -im$r), 
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with 
N-l  

a,,,= r=O x:exp(im$r). 

Substituting (A10) in (A8) we find 

Using ( A 1  l),  (A12) becomes 

Finally, using (AS), we obtain the following equations for the MKRG transformation 
with scale factor A 

where 
N-l  

b,(A)= c x: exp im- r . (A1 5 )  
r = O  (. 3 

In order to preserve the symmetry of the ground state, both in the ferromagnetic 
and antiferromagnetic regions, we must choose A to be odd. Since A is odd and b , ( A )  
is real we can write 

(A16) ( A -  l)Intbm(A)l ( b m ( A ) ) A  = b m ( h ) I b m ( A ) ( * - l  = b m ( A )  e 

We take this equation as a definition, even for infinitesimal changes A = 1 + E .  To first 
order in E the RHS of (A16) becomes 

b m (  1) + E[bm( l  )In\ bm(1) l  a b m /  aA I A = 11. 
Substituting this result in equation (A14) we obtain 

x: = x, +&G,({x,}) 

where G, is given by  

G,({x,})= x,lnx, +- 1 N-l N-l 

1 x, exp ( $ )  ir- m 
m=O r = ~  
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